Tuesday, May 6, 2008

Mouse genetics and formation of spatial memory

Mouse Cognition-Related Behavior in the Open-Field: Emergence of Places of Attraction (Dvorkin et al)

The mouse in a maze is a pretty familiar image to many, even if they are only loosely familiar with the formalities of psychological studies. In this article, researchers placed different genetic strains of mice in an open space - not a maze - and tracked their patterns of movement. Interestingly, the researchers determined that a correlation exists between the genetic strain of mouse and the movement behavior of the mouse, and inferred that perceptual and/or cognitive differences (due to genetics) are the causal factor. The movement behavior investigated was the tendency of the mouse to stop in a particular location in the open space, relative to how many times the mouse had passed through or stopped in that particular location. With various factors (including overall tendency to stop, as well as olfactory influences) controlled for, the researchers discovered that two of the three strains of mice investigated were more likely to stop in a particular location if they had passed through it or stopped there more times (implying that stopping behavior is related to memory of location), whereas the third strain of mouse did not show such a relationship between those aspects of movement behavior. The strain of mouse that did not exhibit this movement pattern is of a genetic variety that is known to cause malfunctions in the hippocampus, an area of the brain known to have a significant role in memory. The strain of mouse that had the greatest tendency to stop in previously-visited locations is reportedly a relatively new genetic strain that is highly similar to wild-type mice. This study provides valuable information supporting the role of genetics on the formation of spatial memory in mice. I would suggest that it also supports the notion that even in different and more complex species such as our own, inherited biological factors may predispose certain individuals to have greater or lesser learning capacity in very specific types of tasks (not just overall).

No comments:

Post a Comment